
5 Steps to Set Up a Fast,
Secure NGINX Reverse Proxy
Server
Written by Dan Ford at https://www.dlford.io/nginx-naxsi-http2-tls13-pagespeed/ but copying here
for local reference
Learn how to set up a fast and secure NGINX reverse proxy server with NAXSI and PageSpeed
plugins using secure TLSv1.3 and HTTP2 protocols

Update (October 6th, 2019): Added Brotli compression.

This guide assumes you are using Ubuntu 18.04, if you are not you will need to hunt down some
package names.

In this tutorial, you will install NGINX with NAXSI web application firewall, and the PageSpeed and
HTTP2 plugins, set up Email alerts when new versions of NGINX or NAXSI are released, and
configure it as a fast and secure reverse proxy server for hosting and optimizing multiple web sites
behind a single IP address.

What is NAXSI
NAXSI is a web application firewall for protecting web endpoints from malicious requests, it
employs a whitelist what you need and block the rest methodology. Security should be addressed
as a layered approach, NAXSI is a solid defensive layer against XSS, SQL injection, and some other
nasty things bad actors can attempt, but be advised it cannot defend against every vulnerability,
no single tool really can.

NAXSI means Nginx Anti XSS & SQL Injection.

Technically, it is a third party nginx module, available as a package for many
UNIX-like platforms. This module, by default, reads a small subset of simple (and
readable) rules containing 99% of known patterns involved in website

https://www.dlford.io/nginx-naxsi-http2-tls13-pagespeed/

Why build from source
The packaged version doesn’t include PageSpeed plugin or NAXSI WAF, if you don’t mind foregoing
the little speed boost you get from the PageSpeed plugin optimizations and the security layer you
get from NAXSI, there’s nothing wrong with using the packaged version. Just grab the NGINX
configuration file and template files below, and remove any reference to NAXSI or PageSpeed and
you will have a relatively secure reverse proxy server with HTTP2, I’m not sure if you will be able to
use TLSv1.3 with the packaged version or not.

Step 1 - Build NGINX from source
First let’s install a slew of dependancies for building from source and the PageSpeed plugin, and
certbot for obtaining free SSL certificates from LetsEncrypt.

You may need to run the command apt-add-repository universe if you get errors here, some versions
of Ubuntu do not include the universe repository by default and that is where jq and certbot are
sourced.

Then install the packaged version of NGINX, and tell apt it is not to install any updates, since that
would be a downgrade from our source build. Installing the packaged version first will set up the
service in systemd so we don’t have to worry about starting NGINX at boot time, and sets up a few

vulnerabilities. For example, <, | or drop are not supposed to be part of a URI.

Being very simple, those patterns may match legitimate queries, it is the Naxsi’s
administrator duty to add specific rules that will whitelist legitimate behaviours.
The administrator can either add whitelists manually by analyzing nginx’s error
log, or (recommended) start the project with an intensive auto-learning phase
that will automatically generate whitelisting rules regarding a website’s
behaviour.

In short, Naxsi behaves like a DROP-by-default firewall, the only task is to add
required ACCEPT rules for the target website to work properly. (Source:
https://github.com/nbs-system/naxsi)

apt install -y libpcre3 libpcre3-dev libssl-dev \
unzip make libgoogle-perftools-dev google-perftools \
jq gcc git zlib1g zlib1g-dev build-essential uuid-dev \
certbot git

https://github.com/nbs-system/naxsi

other default files.

Check the installed version with the command nginx -v , in my case I had version 1.14.0 installed.

We have to remove all of the configuration files since they are likely not compatible with the newer
version of NGINX.

Now create the build script to install NGINX from source with all the extra goodies.

First we need to check check the OpenSSL version on your system, if you are on Ubuntu 18.04 you
should have 1.1.1 already, TLSv1.3 is only available with OpenSSL version 1.1.1 or higher.

Copy and paste the appropriate script below into the new file depending on whether or not you
have OpenSSL version 1.1.1 or greater, or lower than 1.1.1. If you don’t have version 1.1.1 or
greater, the second script will download the source for OpenSSL and reference that when building
NGINX.

This script will check for the newest versions and re-build every time it is run, so you’ll want to
keep it on the system for future updates.

/usr/local/bin/build-nginx-naxsi.sh
(OpenSSL 1.1.1 or greater)

apt install -y nginx
apt-mark hold nginx-core
apt-mark hold nginx-common

rm -rf /etc/nginx/*

touch /usr/local/bin/build-nginx-naxsi.sh
chmod +x /usr/local/bin/build-nginx-naxsi.sh

openssl version

#!/usr/bin/env bash

move previous build to backup if it exists, overwriting previous backup
if [[-d "/usr/local/src/nginx"]]; then
 if [[-d "/usr/local/src/nginx-old"]]; then
 rm -rf /usr/local/src/nginx-old

 fi
 mv /usr/local/src/nginx /usr/local/src/nginx-old
fi
delete previous nginx config backup if it exists
if [[-d "/usr/local/src/nginx-conf"]]; then
 rm -rf /usr/local/src/nginx-conf
fi
backup nginx config just in case
mkdir /usr/local/src/nginx-conf
cp -a /etc/nginx/* /usr/local/src/nginx-conf/
create new build directory and cd to it
mkdir /usr/local/src/nginx
cd /usr/local/src/nginx
get versions
latestNginx=$(curl -s http://hg.nginx.org/nginx/atom-tags |
grep "<title>release-" | sort --version-sort | tail -1 |
sed 's/<title>release-//g' | sed 's/<\/title>//g' | sed 's/^ *//g')
latestNaxsi=$(curl -s https://api.github.com/repos/nbs-system/naxsi/releases |
 jq -r .[].tag_name | grep -v rc | head -1)
latestPagespeed=$(curl -s https://api.github.com/repos/apache/incubator-pagespeed-ngx/tags |
 jq -r .[].name | grep stable | head -1)
get source files for pagespeed nginx, naxsi, and brotli
wget http://nginx.org/download/nginx-`echo $latestNginx`.tar.gz
wget https://github.com/nbs-system/naxsi/archive/${latestNaxsi}.tar.gz
wget https://github.com/apache/incubator-pagespeed-ngx/archive/${latestPagespeed}.tar.gz
git clone --recursive https://github.com/google/ngx_brotli.git
tar xzf nginx-`echo $latestNginx`.tar.gz
tar xzf ${latestNaxsi}.tar.gz
tar xzf ${latestPagespeed}.tar.gz
prepare pagespeed
nps_dir=$(find . -name "*pagespeed-ngx-*" -type d)
cd "$nps_dir"
NPS_RELEASE_NUMBER=${latestPagespeed/beta/}
NPS_RELEASE_NUMBER=${latestPagespeed/stable/}
psol_url=https://dl.google.com/dl/page-speed/psol/${NPS_RELEASE_NUMBER}.tar.gz
[-e scripts/format_binary_url.sh] && psol_url=$(scripts/format_binary_url.sh PSOL_BINARY_URL)
wget ${psol_url}
tar xzf $(basename ${psol_url})
build and install

cd /usr/local/src/nginx
cd nginx-`echo $latestNginx`
./configure --conf-path=/etc/nginx/nginx.conf \
 --add-module=../naxsi-${latestNaxsi}/naxsi_src/ \
 --add-module=../$nps_dir \
 --add-module=../ngx_brotli \
 --error-log-path=/var/log/nginx/error.log \
 --http-client-body-temp-path=/var/lib/nginx/body \
 --http-fastcgi-temp-path=/var/lib/nginx/fastcgi \
 --http-log-path=/var/log/nginx/access.log \
 --http-proxy-temp-path=/var/lib/nginx/proxy \
 --lock-path=/var/lock/nginx.lock \
 --pid-path=/var/run/nginx.pid \
 --with-http_ssl_module \
 --with-http_v2_module \
 --with-stream \
 --with-stream_realip_module \
 --with-stream_ssl_module \
 --without-mail_pop3_module \
 --without-mail_smtp_module \
 --without-mail_imap_module \
 --without-http_uwsgi_module \
 --without-http_scgi_module \
 --prefix=/usr
make
make install
backup naxsi core rules and download latest core rules
cd /etc/nginx
mv /etc/nginx/naxsi_core.rules /etc/nginx/naxsi_core.rules.bak
wget -q https://raw.githubusercontent.com/nbs-system/naxsi/master/naxsi_config/naxsi_core.rules
do nginx config test and restart nginx if passed
check="$(/usr/sbin/nginx -t 2>&1 | grep success | sed 's/.*conf //g')"
if [[$check == "test is successful"]];then
 systemctl restart nginx
 sleep 5
 systemctl status nginx
else
 echo "nginx config test failed!!!"
fi

/usr/local/bin/build-nginx-naxsi.sh
(OpenSSL version lower than 1.1.1)

exit 0

#!/usr/bin/env bash

move previous build to backup if it exists, overwriting previous backup
if [[-d "/usr/local/src/nginx"]]; then
 if [[-d "/usr/local/src/nginx-old"]]; then
 rm -rf /usr/local/src/nginx-old
 fi
 mv /usr/local/src/nginx /usr/local/src/nginx-old
fi
delete previous nginx config backup if it exists
if [[-d "/usr/local/src/nginx-conf"]]; then
 rm -rf /usr/local/src/nginx-conf
fi
backup nginx config just in case
mkdir /usr/local/src/nginx-conf
cp -a /etc/nginx/* /usr/local/src/nginx-conf/
create new build directory and cd to it
mkdir /usr/local/src/nginx
cd /usr/local/src/nginx
get source for openssl 1.1.1 (tls 1.3 compatibility)
git clone https://github.com/openssl/openssl.git
cd openssl
git checkout OpenSSL_1_1_1-stable
cd /usr/local/src/nginx
get versions
latestNginx=$(curl -s http://hg.nginx.org/nginx/atom-tags |
grep "<title>release-" | sort --version-sort | tail -1 |
sed 's/<title>release-//g' | sed 's/<\/title>//g' | sed 's/^ *//g')
latestNaxsi=$(curl -s https://api.github.com/repos/nbs-system/naxsi/releases |
 jq -r .[].tag_name | grep -v rc | head -1)
latestPagespeed=$(curl -s https://api.github.com/repos/apache/incubator-pagespeed-ngx/tags |
 jq -r .[].name | grep stable | head -1)
get source files for pagespeed nginx, naxsi, and brotli

wget http://nginx.org/download/nginx-`echo $latestNginx`.tar.gz
wget https://github.com/nbs-system/naxsi/archive/${latestNaxsi}.tar.gz
wget https://github.com/apache/incubator-pagespeed-ngx/archive/${latestPagespeed}.tar.gz
git clone --recursive https://github.com/google/ngx_brotli.git
tar xzf nginx-`echo $latestNginx`.tar.gz
tar xzf ${latestNaxsi}.tar.gz
tar xzf ${latestPagespeed}.tar.gz
prepare pagespeed
nps_dir=$(find . -name "*pagespeed-ngx-*" -type d)
cd "$nps_dir"
NPS_RELEASE_NUMBER=${latestPagespeed/beta/}
NPS_RELEASE_NUMBER=${latestPagespeed/stable/}
psol_url=https://dl.google.com/dl/page-speed/psol/${NPS_RELEASE_NUMBER}.tar.gz
[-e scripts/format_binary_url.sh] && psol_url=$(scripts/format_binary_url.sh PSOL_BINARY_URL)
wget ${psol_url}
tar xzf $(basename ${psol_url})
build and install
cd /usr/local/src/nginx
cd nginx-`echo $latestNginx`
./configure --conf-path=/etc/nginx/nginx.conf \
 --add-module=../naxsi-${latestNaxsi}/naxsi_src/ \
 --add-module=../$nps_dir \
 --add-module=../ngx_brotli \
 --error-log-path=/var/log/nginx/error.log \
 --http-client-body-temp-path=/var/lib/nginx/body \
 --http-fastcgi-temp-path=/var/lib/nginx/fastcgi \
 --http-log-path=/var/log/nginx/access.log \
 --http-proxy-temp-path=/var/lib/nginx/proxy \
 --lock-path=/var/lock/nginx.lock \
 --pid-path=/var/run/nginx.pid \
 --with-http_ssl_module \
 --with-http_v2_module \
 --with-stream \
 --with-stream_realip_module \
 --with-stream_ssl_module \
 --without-mail_pop3_module \
 --without-mail_smtp_module \
 --without-mail_imap_module \
 --without-http_uwsgi_module \
 --without-http_scgi_module \

Now run the script (/usr/local/bin/build-nginx-naxsi.sh), and watch it go. You can re-check the version
now and it should be newer with the same command nginx -v , in my case I’m now running 1.17.1 .

Potential Build Error and Solution
If you run into errors like the following:

This is caused by warnings being treated as errors in the GCC compiler, I beleive this behavior
change was added in GCC version 8 (use the command gcc -v to check). You can disable this
behavior when building NGINX by adding the line CFLAGS="-Wno-stringop-truncation -Wno-stringop-
overflow -Wno-size-of-pointer-memaccess" \ right before the ./configure ... lines, it should look something

 --prefix=/usr \
 --with-openssl=/usr/local/src/nginx/openssl
make
make install
backup naxsi core rules and download latest core rules
cd /etc/nginx
mv /etc/nginx/naxsi_core.rules /etc/nginx/naxsi_core.rules.bak
wget -q https://raw.githubusercontent.com/nbs-system/naxsi/master/naxsi_config/naxsi_core.rules
do nginx config test and restart nginx if passed
check="$(/usr/sbin/nginx -t 2>&1 | grep success | sed 's/.*conf //g')"
if [[$check == "test is successful"]];then
 systemctl restart nginx
 sleep 5
 systemctl status nginx
else
 echo "nginx config test failed!!!"
fi
exit 0

../naxsi-0.56/naxsi_src/naxsi_runtime.c:728:5: error: 'strncat' specified bound 1 equals source length [-
Werror=stringop-overflow=]
 strncat((char*)tmp_hashname.data, "#", 1);
 ^~~
../naxsi-0.56/naxsi_src/naxsi_runtime.c:731:3: error: 'strncat' specified bound 1 equals source length [-
Werror=stringop-overflow=]
 strncat((char*)tmp_hashname.data, "#", 1);
 ^~~
cc1: all warnings being treated as errors

like this:

Step 2 - Software update Email
alerts
It is critically important that you stay on top of updates being as we are running the latest stable
version, most OS packages are a few versions behind to ensure all the issues have been worked
out. If a vulnerability is found, you’ll want to patch the day of! Before proceeding you should set up
Postfix on your server to relay email alerts to you, and install mailutils for Email submission.

If you don’t wish to do this just skip to the next step, I do recommend you sign up for the NGINX

Announce mailing list instead so you can still re-run the installer script when new versions are
released.

Let’s create a script to check the latest versions of NGINX and NAXSI, and send out an Email if they
are newer than what is installed.

Copy and paste the script below into the file

don’t forget to change the Email address at the emailTo: line in the script.

/usr/local/bin/nginx-update-notifier.sh

...
build and install
cd nginx-`echo $latestNginx`
CFLAGS="-Wno-stringop-truncation -Wno-stringop-overflow -Wno-size-of-pointer-memaccess" \
./configure --conf-path=/etc/nginx/nginx.conf \
 --add-module=../naxsi-${latestNaxsi}/naxsi_src \
...

touch /usr/local/bin/nginx-update-notifier.sh
chmod +x /usr/local/bin/nginx-update-notifier.sh

#!/bin/bash

emailTo="you@yourdomain.com"

http://mailman.nginx.org/mailman/listinfo/nginx-announce
http://mailman.nginx.org/mailman/listinfo/nginx-announce

Now create the two following files to schedule this script as a systemd timer, or use cron if you
prefer.

/etc/systemd/system/nginx-update-
notifier.service

latestNginx=$(curl -s http://hg.nginx.org/nginx/atom-tags |
grep "<title>release-" | sort --version-sort | tail -1 |
sed 's/<title>release-//g' | sed 's/<\/title>//g' | sed 's/^ *//g')
latestNaxsi=$(curl -s https://api.github.com/repos/nbs-system/naxsi/releases | \
 jq -r .[].tag_name | grep -v rc | head -1)
currentNginx="$(/usr/sbin/nginx -v 2>&1 | sed 's/.*nginx\///g')"
currentNaxsi="$(/usr/sbin/nginx -V 2>&1 | grep 'naxsi' | \
 sed 's/.*naxsi-//g' | sed 's/\/.*//g')"
versionCheck="$(printf "$latestNginx\n$currentNginx" | sort -V | tail -n1)"
if [["$versionCheck" != "$currentNginx"]] ||
 [["$latestNaxsi" != "$currentNaxsi"]]; then
 echo -e \
 "Use build-nginx-naxsi.sh to update:
 NGINX: $currentNginx -> $latestNginx
 NAXSI: $currentNaxsi -> $latestNaxsi" | \
 mail -s "NGINX/NAXSI Update Available" $emailTo
else
 echo -e \
 "NGINX and NAXSI are up to date:
 NGINX: $currentNginx -> $latestNginx
 NAXSI: $currentNaxsi -> $latestNaxsi"
fi

exit 0

[Unit]
Description=Check for nginx and naxsi updates

[Service]
Type=oneshot
ExecStart=/usr/local/bin/nginx-update-notifier.sh

/etc/systemd/system/nginx-update-
notifier.timer

To enable the timer, we just need to run a few commands.

Step 3 - Boilerplate configuration
We need a cache directory for the PageSpeed plugin to use, and some directories for site
configurations and NAXSI configurations. I really think Apache had it right with the sites-available
and sites-enabled format, so we will set that up.

The PageSpeed plugin works best when the cache directory is on tmpfs (stored in RAM instead of
hard disk), so we will make /var/cache/pagespeedcache a tmpfs directory by declaring it as such in
/etc/fstab , add the following to the bottom of the file.

/etc/fstab

[Unit]
Description=Check for nginx and naxsi updates

[Timer]
Check daily at 5am
OnCalendar=*-*-* 05:00:00
Persistent=true
Unit=nginx-update-notifier.service

[Install]
WantedBy=timers.target

systemctl enable nginx-update-notifier.timer
systemctl start nginx-update-notifier.timer

mkdir /etc/nginx/sites-available
mkdir /etc/nginx/sites-enabled
mkdir /etc/nginx/snippets
mkdir /etc/nginx/naxsi-rules
mkdir -p /var/cache/pagespeedcache

Be mindful of the amount of space you give here at size=512M , I would say no more than 1/4 of
your available RAM, my server has 2G of RAM so I used 512M. If you can’t allocate at least 64M to
the tmpfs, just skip this step and leave it as a regular directory on the hard disk.

No we need to mount the tmpfs and set permissions.

Let’s make a quick and easy 403 page, this is what will be shown for requests that are blocked by
NAXSI, you can spruce this up however you like later.

/var/www/html/403.html

We also need to generate Diffie-Hellman parameters, without getting into too much jargon, these
are used in key exchanges and should be unique to your specific server for security, you can read
more here if you are interested.

Image not found or type unknown

tmpfs ramdisk for PageSpeed cache
tmpfs /var/cache/pagespeedcache tmpfs defaults,noatime,nosuid,nodev,noexec,mode=1777,size=512M 0 0

mount -a
chown www-data. /var/cache/pagespeedcache

<!DOCTYPE html>
<html>
 <head>
 <title>403</title>
 </head>
 <body>
 Error 403: Access Denied
 </body>
</html>

openssl dhparam -out /etc/ssl/certs/dhparam.pem 4096

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://www.amazon.com/dp/1786466171?tag=dlfordio-20&linkCode=ogi&th=1&psc=1

Further Reading: This process will take a few minutes, while you are waiting I recommend taking a
look at this book because it gives a very in-depth view of all the advanced features and
functionality that NGINX has to offer: NGINX Cookbook, by Tim Butler

NGINX Cookbook: Over 70 recipes for real-world configuration, deployment, and performance

$48.99 on Amazon

And a dummy self-signed certificate that we will temporarily use to get signed certificates from
LetsEncrypt.

Now let’s put together some configuration files for common settings, create the following files.

/etc/nginx/snippets/limit-request-
methods.conf

/etc/nginx/snippets/pagespeed.conf

openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365000 -nodes
mv key.pem /etc/ssl/private/ssl-cert-snakeoil.key
mv cert.pem /etc/ssl/certs/ssl-cert-snakeoil.pem

Only allow common method : GET, POST and HEAD
(HEAD is implicitly allowed with GET)
limit_except GET POST {
 deny all;
}

Needs to exist and be writable by nginx.
pagespeed FileCachePath /var/ngx_pagespeed_cache;

Lazyload images
pagespeed EnableFilters lazyload_images;

Auto convert images
pagespeed EnableFilters rewrite_images;
pagespeed EnableFilters convert_png_to_jpeg;
pagespeed EnableFilters convert_jpeg_to_webp;

https://www.amazon.com/dp/1786466171?tag=dlfordio-20&linkCode=ogi&th=1&psc=1

/etc/nginx/snippets/ssl-params.conf
Be warned that the Strict-Transport-Security header will cause you major problems if you remove
SSL/TLS from any proxied site later, you should probably comment that line out for now and enable
it later after you are sure everything is running smoothly.

Note: For a more compatible set of SSL protocols while maintaining a decent level of security,
replace the first two lines of the ssl-params.conf file with the following.

pagespeed EnableFilters convert_to_webp_lossless;

Ensure requests for pagespeed optimized resources go to the pagespeed handler
and no extraneous headers get set.
location ~ "\.pagespeed\.([a-z]\.)?[a-z]{2}\.[^.]{10}\.[^.]+" {
 add_header "" "";
}
location ~ "^/pagespeed_static/" { }
location ~ "^/ngx_pagespeed_beacon$" { }

ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers 'TLS13-AES-256-GCM-SHA384:TLS-CHACHA20-POLY1305-SHA256:TLS-AES-256-GCM-SHA384:TLS-
AES-128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-
CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-
AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256';
ssl_prefer_server_ciphers on;
ssl_ecdh_curve secp384r1;
ssl_session_cache shared:SSL:50m;
ssl_session_timeout 1d;
ssl_session_tickets off;
ssl_stapling on;
ssl_stapling_verify on;
resolver 8.8.8.8 8.8.4.4 valid=300s;
resolver_timeout 5s;
add_header Strict-Transport-Security "max-age=31536000; includeSubdomains" always;
add_header X-Frame-Options SAMEORIGIN;
add_header X-Content-Type-Options nosniff;
add_header X-XSS-Protection "1; mode=block";
ssl_dhparam /etc/ssl/certs/dhparam.pem;

/etc/nginx/naxsi-rules/template

/etc/nginx/sites-available/template

ssl_protocols SSLv3 TLSv1.1 TLSv1.2 TLSv1.3;
ssl_ciphers 'TLS13-AES-256-GCM-SHA384:TLS-CHACHA20-POLY1305-SHA256:TLS-AES-256-GCM-SHA384:TLS-
AES-128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-
CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-
AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256
EECDH+ECDSA+AESGCM:EECDH+aRSA+AESGCM:EECDH+ECDSA+SHA384:EECDH+ECDSA+SHA256:EECDH+a
RSA+SHA384:EECDH+aRSA+SHA256:EECDH+aRSA+RC4:EECDH:EDH+aRSA:RC4:!aNULL:!eNULL:!LOW:!3DES:!
MD5:!EXP:!PSK:!SRP:!DSS:!CAMELLIA';

LearningMode;
SecRulesEnabled;
DeniedUrl "/403.html";

check rules
CheckRule "$SQL >= 4" BLOCK;
CheckRule "$RFI >= 4" BLOCK;
CheckRule "$TRAVERSAL >= 2" BLOCK;
CheckRule "$EVADE >= 2" BLOCK;
CheckRule "$XSS >= 4" BLOCK;

white list
e.g. BasicRule wl:1007 "mz:$URL:/index.html|$BODY_VAR:message|URL";

redirect http traffic to https
server {
 listen 80;
 server_name SERVERNAME;
 return 301 https://SERVERNAME$request_uri;
}

https reverse proxy
server {

 listen 443 ssl http2;
 server_name SERVERNAME;
 ssl_certificate /etc/ssl/certs/ssl-cert-snakeoil.pem;
 ssl_certificate_key /etc/ssl/private/ssl-cert-snakeoil.key;
 # ssl_certificate /etc/letsencrypt/live/SERVERNAME/fullchain.pem;
 # ssl_certificate_key /etc/letsencrypt/live/SERVERNAME/privkey.pem;
 include /etc/nginx/snippets/ssl-params.conf;
 include /etc/nginx/snippets/pagespeed.conf;
 location / {
 include /etc/nginx/snippets/limit-request-methods.conf;
 include /etc/nginx/naxsi-rules/SERVERNAME.rules;
 proxy_hide_header X-Powered-By;
 proxy_pass_header Authorization;
 proxy_pass http://SERVERIPADDRESS;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $host;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_http_version 1.1;
 proxy_set_header Connection "";
 proxy_buffering off;
 client_max_body_size 0;
 proxy_read_timeout 36000s;
 proxy_redirect off;
 }

 # letsencrypt validation
 location '/.well-known/acme-challenge' {
 default_type "text/plain";
 root /var/www/html;
 }

 # 403 redirect for NAXSI rejections
 location '/403.html' {
 default_type "text/html";
 root /var/www/html;
 }
}

/etc/nginx/sites-available/default

Go ahead and get rid of the main configuration file with rm /etc/nginx/nginx.conf , and create it again
with the following configuration.

/etc/nginx/nginx.conf

server {
 listen 80 default_server;
 server_name _;
 return 444;
}

server {
 listen 443 ssl default_server http2;
 server_name _;
 ssl_protocols TLSv1.2 TLSv1.3;
 ssl_ciphers 'TLS13-AES-256-GCM-SHA384:TLS-CHACHA20-POLY1305-SHA256:TLS-AES-256-GCM-SHA384:TLS-
AES-128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-
CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-
AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256';
 ssl_prefer_server_ciphers on;
 ssl_ecdh_curve secp384r1;
 ssl_session_cache shared:SSL:50m;
 ssl_session_timeout 1d;
 ssl_session_tickets off;
 add_header Strict-Transport-Security "max-age=31536000; includeSubdomains" always;
 add_header X-Frame-Options SAMEORIGIN;
 add_header X-Content-Type-Options nosniff;
 add_header X-XSS-Protection "1; mode=block";
 ssl_dhparam /etc/ssl/certs/dhparam.pem;
 ssl_certificate /etc/ssl/certs/ssl-cert-snakeoil.pem;
 ssl_certificate_key /etc/ssl/private/ssl-cert-snakeoil.key;
 return 444;
}

user www-data;
worker_processes auto;

pid /run/nginx.pid;

events {
 worker_connections 768;
 use epoll;
 multi_accept on;
}

http {

 ##
 # Basic Settings
 ##

 include /etc/nginx/naxsi_core.rules;

 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 keepalive_timeout 65;
 keepalive_requests 100000;
 types_hash_max_size 2048;
 server_tokens off;
 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 ##
 # Logging Settings
 ##

 # Log to file
 #access_log /var/log/nginx/access.log;
 #error_log /var/log/nginx/error.log;
 # Log to syslog
 error_log syslog:server=unix:/dev/log,facility=local7,tag=nginx,severity=error;
 access_log syslog:server=unix:/dev/log,facility=local7,tag=nginx,severity=info;

 ##
 # Brotli Settings
 ##

 brotli on;
 brotli_comp_level 6;
 brotli_static on;
 brotli_types text/xml image/svg+xml application/x-font-ttf image/vnd.microsoft.icon application/x-font-
opentype application/json font/eot application/vnd.ms-fontobject application/javascript font/otf application/xml
application/xhtml+xml text/javascript application/x-javascript text/plain application/x-font-truetype
application/xml+rss image/x-icon font/opentype text/css image/x-win-bitmap;

 ##
 # Gzip Settings
 ##

 gzip on;
 gzip_disable "msie6";
 gzip_vary on;
 gzip_proxied any;
 gzip_comp_level 6;
 gzip_buffers 16 8k;
 gzip_http_version 1.1;
 gzip_types text/plain text/css text/xml application/json application/javascript application/xml+rss
application/atom+xml image/svg+xml;

 ##
 # Virtual Host Configs
 ##

 include /etc/nginx/conf.d/*.conf;
 include /etc/nginx/sites-enabled/*;

 ##
 # Caching
 ##

 open_file_cache max=1000 inactive=20s;
 open_file_cache_valid 30s;
 open_file_cache_min_uses 5;
 open_file_cache_errors off;
}

Lastly, let’s enable the default server, this will ignore all requests to the NGINX server by it’s IP
address, so if you just type the public IP address into your browser it will not respond, it will only
respond to requests with a valid hostname. We will enable it by making a symlink from the file in
sites-available to the sites-enabled directory.

Step 4 - Setting up backend sites
Now for the easy part! Any time you wish to host a new site, just run through this checklist
(remember to restart NGINX after each one):

1. Copy the template in the template in naxsi-rules to nameofyoursite.rules and the template in
sites-available to nameofyoursite.conf and edit it accordingly, and symlink it to the sites-

enabled directory
2. Get a free SSL certificate from LetsEncrypt and update the site configuration file to use it
3. Configure NAXSI rules

Let’s set up the site example.com with a backend at IP Address 10.5.5.5.

Below are the lines I edited, I’ve omitted the lines that weren’t changed, note that the SSL
certificate paths are still commented out, we need to use the snakeoil (self-signed) certificate for
the moment.

The default settings are very restrictive, you may need to open them up a bit, you could for
example modify the limit-request-methods.conf file if all sites need changing, or make a new
snippet file and modify that for example limit-request-methods-wordpress-sites.conf and import that
snippet in the main site configuration file, or just copy it’s contents to the main site configuration
file instead of including the snippet file and modify them there if it’s just one site.

/etc/nginx/sites-
available/example.com.conf

ln -s /etc/nginx/sites-available/default /etc/nginx/sites-enabled/

cd /etc/nginx/naxsi-rules
cp template example.com.rules
cd /etc/nginx/sites-available
cp template example.com.conf

Now symlink the configuration file to the sites-enabled directory.

If you ever need to take the site down, you can just delete the symlink and leave the configuration
file in sites-available for later use or reference (e.g. rm /etc/nginx/sites-enabled/example.com.conf).

Great, now test the configuration with the command nginx -t and then restart NGINX with the
command service nginx restart if the test passed. The NGINX server needs to be accessible from the
outside internet, and have the domain name example.com resolve to it’s public IP address before
proceeding. LetsEncrypt needs to verify we own the domain before it will hand out a certificate, so
when we run the next command, the certbot program will create a file with a unique identifier in it,
and the remote LetsEncrypt server will request that file from example.com/.well-known/acme-challenge ,
if the file matches it will issue the certificate. certbot should automatically set up a service timer in
systemd when it is installed to renew certificates before they expire, so you shouldn’t need to
worry about that.

redirect http traffic to https
server {
 ...
 server_name example.com www.example.com;
 return 301 https://www.example.com$request_uri;
}

https reverse proxy
server {
 ...
 server_name example.com www.example.com;
 ...
 # ssl_certificate /etc/letsencrypt/live/example.com/fullchain.pem;
 # ssl_certificate_key /etc/letsencrypt/live/example.com/privkey.pem;
 ...
 location / {
 ...
 proxy_pass http://10.5.5.5;
 ...
 }

 ...
}

ln -s /etc/nginx/sites-available/example.com.conf /etc/nginx/sites-enabled/

certbot certonly --webroot -w /var/www/html -d example.com -d www.example.com

You will be asked to provide your Email address for expiration alerts, and to accept the terms of
service. The renewal alerts are handy because if something ever goes wrong and renewal fails,
you’ll be informed before there is a real problem.

You should now have a valid SSL certificate for example.com , we just need to enable it in the sites
configuration file by commenting out the snakeoil certificate paths and uncommenting the
LetsEncrypt certificate paths.

/etc/nginx/sites-
available/example.com.conf (Again)

After testing and restarting NGINX again, your site should be live. Right now the NAXSI web
application firewall is in learning mode, so it will not block any requests. You should visit your site,
click all the buttons, fill out all the forms, and generally do all of the things you would expect a
normal user to do while NAXSI collects logs about which requests it would normally block.

All that’s left is to add exclusions for the NAXSI rules that triggered in learning mode, and disable
learning mode. Look in your NGINX error log for lines with the text NAXSI_FMT , if you used the
NGINX configuration file above the logs will be in your syslog file. There will likely be a lot, but I’ll
work through one example with you, I’ve chosen a pretty complex one for your benefit.

This will look very intimidating the first time you see it, but I promise once you work through a few
it will become second nature pretty quickly.

cat /var/log/syslog | grep 'NAXSI_FMT' | less

There is an example of the rule syntax in the naxsi-rules/template file that will be in all of the site
files for easy reference, it looks like this:

 # ssl_certificate /etc/ssl/certs/ssl-cert-snakeoil.pem;
 # ssl_certificate_key /etc/ssl/private/ssl-cert-snakeoil.key;
 ssl_certificate /etc/letsencrypt/live/example.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/example.com/privkey.pem;

nginx: [error] 12267#0: *127 NAXSI_FMT:
ip=23.42.23.13&server=example.com&uri=/api/v1&learning=1&vers=0.56&total_processed=25&total_blocked
=1&block=1&cscore0=$SQL&score0=48&cscore1=$XSS&score1=40&cscore2=$TRAVERSAL&score2=24&zone
0=BODY&id0=1010&var_name0=query&zone1=BODY&id1=1011&var_name1=query&zone2=BODY&id2=1015
&var_name2=query&zone3=BODY&id3=1205&var_name3=query&zone4=BODY&id4=1310&var_name4=query
&zone5=BODY&id5=1311&var_name5=query, client: 23.42.23.13, server: example.com, request: "POST /api/v1
HTTP/2.0", host: "example.com", referrer: "https://example.com/"

To break that down some we have:

BasicRule - Each rule starts with this
wl:1007 - Whitelist rule ID 1007
"mz:..."; - Match zone, or what zones to target for this whitelist
| - Separate multiple targets, think of it as the word “and”
$URL:/index.html - Target specific URL
$BODY_VAR:message - Target the variable called ‘message’ in the request body
URL - Target the URL path

All of this information is in the error log, since this is a complex event there are multiple zones, so
I’m only looking at zone 0 right now, we have:

Rule ID: id0=1010
URL: uri=/api/v1
Match Zone: zone0=BODY
Variable: var_name0=query

We can build our rule with that information, and it looks like this:

If var_name0 in the error log was blank, we wouldn’t specify the variable name query , and it would
look like this:

If you were seeing the same match for all URLs, you could omit the URL in the rule, and it would
whitelist the variable for any URL, like this:

If the variable name was constantly changing, for example query_83jd82w and query_g8dj37s and so
on, you could use a regular expression like this:

You can also use regular expressions for the URL, and finally, if the match zone is a user input that
you know for sure is sanitzed on the backend site, you could whitelist all rule IDs for that zone by
specifying an ID of 0 , like this:

BasicRule wl:1007 "mz:$URL:/index.html|$BODY_VAR:message|URL";

BasicRule wl:1010 "mz:$URL:/api/v1|$BODY_VAR:query";

BasicRule wl:1010 "mz:$URL:/api/v1|BODY";

BasicRule wl:1010 "mz:$BODY_VAR:query";

BasicRule wl:1010 "mz:$URL:/api/v1|$BODY_VAR_X:^query_.*$";

BasicRule wl:0 "mz:$URL:/api/v1|$BODY_VAR:query";

The goal is to be specific to let through as little exceptions as possible, so keep that in mind. Now
to finish up, since all of these zones are matching the same variable, URL, and portion, only the
rule ID is different between them, I can whitelist them all in one rule, like this:

A more detailed explaination of the whitelisting options and syntax can be found on the NAXSI
GitHub page , I recommend skimming through the whole wiki, as there are many features and
options available that I haven’t covered here.

I usually write out my rules in a text editor for this part, each rule on a new line. Once that is done,
copy and paste all the lines into the bottom of the file /etc/nginx/naxsi-rules/example.com.conf , while
you are there comment out the line LearningMode to enable NAXSI rule enforcement.

/etc/nginx/naxsi-rules/example.com.conf

Nice, you should visit your website and do all the things again to make sure you didn’t miss any
rules. You can visit https://example.com/delete in your browser to test NAXSI, if you haven’t
whitelisted /delete , you should get the 403 page we made earlier.

Step 5 - Extra security

BasicRule wl:1010,1011,1015,1205,1310,1311 "mz:$URL:/api/v1|$BODY_VAR:query";

#LearningMode;
SecRulesEnabled;
DeniedUrl "/403.html";

check rules
CheckRule "$SQL >= 4" BLOCK;
CheckRule "$RFI >= 4" BLOCK;
CheckRule "$TRAVERSAL >= 2" BLOCK;
CheckRule "$EVADE >= 2" BLOCK;
CheckRule "$XSS >= 4" BLOCK;

white list
e.g. BasicRule wl:1007 "mz:$URL:/index.html|$BODY_VAR:message|URL";
BasicRule wl:1010,1011,1015,1205,1310,1311 "mz:$URL:/api/v1|$BODY_VAR:query";
BasicRule wl:111 "mz:$URL:/somepath/|$ARGS_VAR:shoes";
BasicRule wl:1050 "mz:$URL:/someotherpath/|$ARGS_VAR:boots";
...

https://github.com/nbs-system/naxsi/wiki/whitelists-bnf
https://github.com/nbs-system/naxsi/wiki/whitelists-bnf

I highly recommended setting up Mitchell Krogza’s “Ultimate Bad Bot and Referrer Blocker” for
NGINX. It’s free and open source, and works extremely well to add another layer of security by
denying known bad actors across the internet. You can get it and the setup instructions on this
GitHub page .

Revision #2
Created 2 February 2024 00:17:51 by Cleverness
Updated 2 February 2024 00:23:16 by Cleverness

https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker
https://github.com/mitchellkrogza/nginx-ultimate-bad-bot-blocker

